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a b s t r a c t

This paper provides a prospective insight on chemical vapour deposition (CVD) and atomic layer depo-
sition (ALD) as dry techniques for the processing of amorphous and nanocrystalline metallic thin films.
These techniques are part of major technologies in application fields such as microelectronics, energy, or
protective coatings.

From thermodynamic analysis, areas of investigation to generate a set of materials with the strongest
eywords:
VD
LD
hin films
hermodynamics

propensity for amorphization as well as useful guidelines for the target phase material deposition are
provided.

Prospective to develop MOCVD (metalorganic chemical vapour deposition) and ALD of intermetallic
films, in view of fabrication of metallic glass thin films is proposed. Examples from selected ALD and
MOCVD single element metallic deposition processes will be described to illustrate the effect of deposition
parameters on the physico-chemical properties of the films. This processing approach is particularly

ss th
promising for metallic gla

. Introduction

With their excellent mechanical properties [1,2] metallic glasses
re expected to offer a broad potential of applications as structural
aterials. Recently, due to their intrinsic amorphous structure and

he consequent linear and planar defect-free character, metallic
lasses are investigated to be used as 3D micro-/nano-structures
n micro- and/or nano-electrochemical systems (MEMS/NEMS) [3].
he mechanical behavior of sub micronic to micronic pillars made
f bulk metallic glasses has been studied [4,5]. Experiments were
erformed to evaluate size effects in the deformation mechanisms

n the amorphous alloys. Work is still in progress to conclude on
he existence of a critical size for deformation mechanism and this
uestion is still being debated. Focused Ion Beam (FIB) machin-

ng is used with the aim to develop mechanical testing of metallic
lass at the micro- and nano-scales (below 1 �m) and to fabricate
ano-scaled metallic glass samples [4,5]. To avoid any ion damage
nd ion contamination within a significant nano-scale surface layer
riginated by this technique which cannot be neglected when the

nalyzed sample is becoming very small, an alternative route con-
ists in synthesizing metallic glasses in the form of thin films. Till
ow, among the thin films deposition techniques, physical vapour
eposition methods have been exclusively investigated. Different
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kinds of metallic glass coatings have been deposited, including
Zr–Al–Ni–Cu (sputtering) [6], Pd–Si (sputtering) [4], Cu–Zr (coevap-
oration) [7], Ni–Ti–Zr–Si–Sn (plasma spray) [8].

The aim of this paper is to introduce CVD and ALD as alternative
techniques to process metallic amorphous thin films. Compared to
physical ones, chemical vapour deposition techniques can be used
to provide films with higher purity, better conformality, and more
versatility to composition. With CVD techniques, it can be possible
to fabricate directly micro–nano-pillars by filling up specific matrix
trenches. The challenge for this high potential is the necessity
to master the complex gas phase and surface chemistries. More-
over, compared to PVD, CVD and ALD tend to produce crystalline
phases of metallic materials. Therefore, CVD of glassy metallic films
requires systems with the strongest thermodynamic propensity
for amorphization. A thermodynamic analysis will propose more
appropriate systems such as Cu–Zr. Examples from selected ALD
and MOCVD processes for the deposition of Cu with the effect of
deposition parameters on the film physico-chemical properties will
be described. Prospectives to develop MOCVD and ALD of inter-
metallic films, in the view of fabrication of metallic glasses thin
films will be given.
2. Thermodynamic requirements to metal amorphization

The thermodynamic prerequisites for amorphous metal stabil-
ity are continuously being defined from the early developments
of metallic glasses and debated [9–12]. The objective of these
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However, the chemical vapour deposition of films based on
the Cu–Zr systems can be investigated starting from the above-
mentioned precursors. Addition of a strong reducer might be a
solution.
Fig. 1. Binary phase diagrams of

equirements is to frustrate the formation of crystalline phases. By
hoosing a phase region with compositions and crystal structures
hich do not tolerate stoichiometric deviations, the probability

hat a random adatom on a given crystalline nucleus will be suit-
ble for growth of the crystal decreases. From thermodynamic
nformation, it is possible to predict the propensity of a system
o amorphization. For instance, the Cu–Ni phase diagram (Fig. 1a)
ndicates continuous solid-solution (and miscibility gap at lower
emperatures) that exclude the possibility of amorphous phase for-

ation while the Cu–Zr system (Fig. 1b) with line compounds [13]
eets all the requirements.
Starting with these examples, we will describe the results

btained on selected processes of copper films and the challenges
o be met in order to achieve deposition of zirconium films and
nally Cu–Zr films.

. MOCVD and ALD deposition of Cu films

Several metals have been deposited by CVD and ALD processes.
e present in this paper some interesting results concerning the

eposition of pure copper metallic films.
Due to the predominant position of Cu films in the micro-

lectronics industry, numerous works have been devoted to the
OCVD of Cu. Several families of CVD and ALD precursors have

een introduced. Recent work for the MOCVD of Cu from the copper
I) aminidate precursor ([Cu(i-Pr-MeAMD)]2) shows the positive
ffect of the temperature on the film crystallization (Fig. 2) [14].
articularly, for lower deposition temperatures at 200 ◦C, the size of
he crystallites is smaller than 20 nm. Low deposition temperatures
romote amorphization of the fabricated material.

Several studies of copper deposition were carried out by ALD.
n the case of using CuCl as precursor [15], zinc was used as reduc-
ng agent causing contamination of the thin layer. Moreover, the
olatility of CuCl is relatively low, which involves the use of tem-
eratures above 400 ◦C to evaporate the precursor and achieve
ood deposition. The fluorinated copper precursors are attractive
ecause the presence of –CF3 group in the molecule increases the
olatility of this family of precursors [16]. However, the presence
f fluoride bonds in the precursor may cause fluorine contamina-
ion of the layer and deterioration of adhesion due to the diffusion

f the fluorine element at the interfaces. The appropriate response
o this problem is the use of non-fluorinated precursors. Among
hose already tested in ALD, the �-cetoniminate and �-diiminate
ead to films of relatively pure copper through a reduction with
ilane or diethylsilane at 50 ◦C [17,18]. Moreover, the family of
(a) and Cu–Zr (b) from Ref. [13].

[Cu(Amidinate)]2 can also be considered to be promising because
these precursors are stable and volatile and they lead to deposition
of films of pure copper [19,20].

4. CVD or ALD films of metal with high oxophilicity such as
Zr

Except aluminium (whose deposition has been extensively
developed in the seminal book by Kodas and Hampden-Smith [21])
there are but very few reports on the CVD of pure elements present-
ing a strong affinity to oxygen such as titanium, zirconium. It is due
to the difficulty to satisfy the key aspects of the CVD technique in
view of the strong reactivity of these elements. Such key aspects
include technical limitations of MOCVD reactors and of precursor’s
delivery systems, but mainly concern availability of appropriate
precursors.

Zr organometallic precursors such as TEMAZ (tetrakis
(ethylmethylamino)zirconium) or ZyALD (cyclopentadienyl-
tris(dimethylamino)zirconium) or Zr halides such as ZrCl4 have
been exclusively dedicated to the deposition of Zr oxide [22] or
carbide [23].
Fig. 2. MOCVD of Cu from [Cu(i-Pr-MeAMD)]2 on low carbon steel substrates.
Estimation of particle size by X-ray diffraction line-broadening as a function of
deposition temperature [14].



S and C

5

m
o
t
o
c
h
r
c
o
p
w

A

f

R

[

[
[
[
[

[
[
[
[
[
[
[21] T.T. Kodas, M.J. Hampden-Smith, The Chemistry of Metal CVD, VCH, Weinheim,
424 E. Blanquet et al. / Journal of Alloys

. Concluding remarks

The scientific and technological field of MOCVD and ALD of
etals is actually only partially covered; strong know-how exists

n a limited number of metals, among which are found different
ransition metals (copper, nickel, cobalt). Contrastingly, deposition
f titanium, zirconium at zero valence state has only sporadi-
ally been reported. Appropriate responses to numerous points
ave to be provided for MOCVD or ALD process to be tuned with
egard to metallic glass deposition: precursor selection, reactors
onfigurations, gas phase and surface chemistry. MOCVD or ALD
f multimetallic films are actually in its infancy. This open field is
articularly promising and consequently of potential applications
ith the employment of cutting-edge technology.
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